Postsynaptic currents in deep cerebellar nuclei.
نویسندگان
چکیده
Postsynaptic currents were studied by whole cell recordings in visually identified large neurons of the deep cerebellar nuclei (DCN) in slices of 4- to 11-day-old mice. Spontaneous postsynaptic currents were abolished by the GABA(A) receptor antagonist bicuculline and had a single-exponential decay with a mean time constant of 13.6 +/- 3.2 (SD) ms. Excitatory postsynaptic currents (EPSCs) were evoked in 48/56 neurons recorded. The addition of AMPA and N-methyl-D-aspartate (NMDA) receptor antagonists together completely abolished all synaptic responses. In 1 mM [Mg(2+)](o) and at a holding potential of -60 mV, the peak amplitude of the NMDA component of the EPSC (NMDA-EPSC) was 83.2 +/- 21.2% of the AMPA component (AMPA-EPSC). This indicates that in DCN neurons, at a physiological [Mg(2+)](o) and at the resting membrane potential, NMDA receptors contribute to the synaptic signal. AMPA-EPSCs had a linear current-voltage relationship with a reversal potential of +2.3 +/- 0.4 mV and a single-exponential decay with a voltage-dependent time constant that at -60 mV was 7.1 +/- 3.3 ms. In 10 microM glycine and 1 mM [Mg(2+)](o), the I-V relationship of NMDA-EPSCs had a reversal potential of -0.5 +/- 3.3 mV and a maximal inward current at -33.4 +/- 5.8 mV. The apparent dissociation constant (K(D)) of Mg(2+) for the NMDA receptor-channel at -60 mV, measured by varying [Mg(2+)](o), was 135.5 +/- 55.3 microM, and when measured by fitting the I-V curves with a theoretical function, it was 169.9 +/- 119.5 microM. Thus in the DCN, NMDA receptors have a sensitivity to Mg(2+) that corresponds to subunits that are weakly blocked by this ion (epsilon 3 and epsilon 4) of which the DCN express epsilon 4. NMDA-EPSCs had a double-exponential decay with voltage-dependent time constants that at -60 mV were 20.2 +/- 8.9 and 136.4 +/- 62.8 ms. At positive voltages, the time constants were slower and their contributions were about equal, while in the negative slope conductance region of the I-V curve, the faster time constant became predominant, conferring faster kinetics to the EPSC. The weak sensitivity to Mg(2+) of NMDA receptors, together with a relatively fast kinetics, provide DCN neurons with strong excitatory inputs in which fast dynamic signals are relatively well preserved.
منابع مشابه
Recurrent axon collaterals underlie facilitating synapses between cerebellar Purkinje cells.
Morphological studies have provided ample evidence for synaptic connections between cerebellar Purkinje cells (PCs), but the functional properties of these synapses remain elusive. We report on direct recordings of synaptically connected PCs in mice cerebellar slices. In PCs filled with a fluorescent dye to aid axon visualization and postsynaptic target identification, presynaptic action potent...
متن کاملGlycine receptors and glycinergic synaptic transmission in the deep cerebellar nuclei of the rat: a patch-clamp study.
To clarify possible glycinergic transmission in the cerebellum, principal neurons in deep cerebellar nuclei (DCN) of sliced cerebella (200 microm in thickness) from rats (aged 2-14 days) were studied using whole cell patch-clamp techniques. When glycine (100 microM) was applied to the DCN neurons from a "Y tube," large outward currents were induced (average peak amplitude of about 600 pA at -40...
متن کاملContribution of Somatic and Dendritic SK Channels in the Firing Rate of Deep Cerebellar Nuclei: Implication in Cerebellar Ataxia
Introduction: Loss of inhibitory output from Purkinje cells leads to hyperexcitability of the Deep Cerebellar Nuclei (DCN), which results in cerebellar ataxia. Also, inhibition of small-conductancecalcium-activated potassium (SK) channel increases firing rate f DCN, which could cause cerebellar ataxia. Therefore, SK channel activators can be effective in reducing the symptoms of this disease, ...
متن کاملModulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei Running Title: Serotonergic modulation in the DCN
Cerebellar outputs from the deep cerebellar nuclei (DCN) are critical for generating and controlling movement. DCN neuronal activity is primarily controlled by GABAergic inhibitory transmission by Purkinje cells in the cerebellar cortex, and is also modulated by nerve inputs originating from other brain regions within and outside the cerebellum. In this study, we examined the modulatory effects...
متن کاملLurcher mice exhibit potentiation of GABA(A)-receptor-mediated conductance in cerebellar nuclei neurons in close temporal relationship to Purkinje cell death.
In heterozygous Lurcher mice (Lc/+), the Purkinje cells (PCs) degenerate almost totally during postnatal development. On the other hand, their projection target, the deep cerebellar nuclei (DCN), shows few signs of degeneration and seems to play an important role in maintaining a residual cerebellar function in Lc/+. We asked whether the DCN in Lc/+ develop cellular adaptations allowing them to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 85 1 شماره
صفحات -
تاریخ انتشار 2001